Representations of the Quantum Algebra suq(1,1) and Discrete q-Ultraspherical Polynomials

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MULTIVARIABLE q-HAHN POLYNOMIALS AS COUPLING COEFFICIENTS FOR QUANTUM ALGEBRA REPRESENTATIONS

We study coupling coefficients for a multiple tensor product of highest weight representations of the SU(1,1) quantum group. These are multivariable generalizations of the q-Hahn polynomials. 2000 Mathematics Subject Classification. 17B37, 33D70, 33D80.

متن کامل

A second addition formula for continuous q-ultraspherical polynomials

This paper provides the details of Remark 5.4 in the author’s paper “Askey-Wilson polynomials as zonal spherical functions on the SU(2) quantum group”, SIAM J. Math. Anal. 24 (1993), 795–813. In formula (5.9) of the 1993 paper a two-parameter class of Askey-Wilson polynomials was expanded as a finite Fourier series with a product of two 3phi2’s as Fourier coefficients. The proof given there use...

متن کامل

1 REPRESENTATIONS OF THE q-DEFORMED ALGEBRA U ′ q (so4)

We study the nonstandard q-deformation U ′ q (so 4) of the universal enveloping algebra U (so 4) obtained by deforming the defining relations for skew-symmetric generators of U (so 4). This algebra is used in quantum gravity and algebraic topology. We construct a homomor-phism φ of U ′ q (so 4) to the certain nontrivial extension of the Drinfeld–Jimbo quantum algebra U q (sl 2) ⊗2 and show that...

متن کامل

Representations and Q-Boson Realization of The Algebra of Functions on The Quantum Group GLq(n)

We present a detailed study of the representations of the algebra of functions on the quantum group GLq(n). A q-analouge of the root system is constructed for this algebra which is then used to determine explicit matrix representations of the generators of this algebra. At the end a q-boson realization of the generators of GLq(n) is given.

متن کامل

A q-Analogue of the Centralizer Construction and Skew Representations of the Quantum Affine Algebra

We prove an analogue of the Sylvester theorem for the generator matrices of the quantum affine algebra Uq(ĝln). We then use it to give an explicit realization of the skew representations of the quantum affine algebra. This allows one to identify them in a simple way by calculating their highest weight, Drinfeld polynomials and the Gelfand–Tsetlin character (or q-character). We also apply the qu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry, Integrability and Geometry: Methods and Applications

سال: 2005

ISSN: 1815-0659

DOI: 10.3842/sigma.2005.016